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Abstract. In this paper we introduce a class of cost TU-games arising from
continuous single facility location problems. We give some su‰cient conditions
in order that a game in this class has a non empty core. For the particular sub-
classes of Weber and minimax location games we study under what conditions
the proportionally egalitarian allocation rule selects core allocations.

Zusammenfassung.Ausgehend von kontinuierlichen 1-Standortproblemen wird
in diesem Paper eine neue Klasse von kostenbasierten TU-Spielen eingeführt.
Es werden einige hinreichende Bedingungen präsentiert unter denen ein Spiel
in dieser Klasse einen nicht-leeren Kern hat. Weiterhin werden Zuordnungs-
regeln für die speziellen Teilklassen der Weber und Minimax Standortspiele
vorgeschlagen und es wird untersucht unter welchen Bedingungen die einge-
führten Regeln Zuordnungen aus dem Kern wählen.
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1 Introduction

One important problem treated by operations research is to find optimal loca-
tion of facilities, in such a way that the needs of the potential users are satisfied
and an objective function, which basically depends on the distances from the
users to the facilities, is optimized. This problem gives rise to location theory, an
operational research branch which has generated a vast literature (for a survey,
see Drezner (1995)).

* J. Puerto and F. R. Fernández thank the Spanish Ministry of Education and Culture for finan-
cial support through grant PB97-0707. Ignacio Garcı́a-Jurado thanks the Spanish Ministry of
Education and Culture for financial support through grant PB98-0613-C02-02.



In the last years, some game theorists have considered operational research
problems in which the di¤erent elements of the model are controlled by dif-
ferent players, and have treated the question of how are these players going
to allocate the benefits (or the costs) if they cooperate and join their forces to
implement an optimal solution (from the operations research point of view) of
the problem. The precursors of this new treatment can be considered Shapley
and Shubik (1972) with their work on assignment games. Two recent surveys
on games arising from operations research are Curiel (1997) and Borm et al
(2001).

Some cost allocation games arising from location problems have already
been described and analyzed. For instance, Granot (1982) studies games asso-
ciated with single facility location problems in tree graphs, Tamir (1992) con-
siders coverage models on graphs, and Curiel (1997) deals with games arising
from p-facilities problems in graphs. However, as far as we know, the cost al-
location games associated with continuous location problems have never been
approached. In this paper, we define the class of continuous single facility lo-
cation games and we provide some results on the core of the games in this class.
In particular, we obtain two su‰cient conditions in order that a continuous
single facility location game has a non empty core (section 3), and study under
what conditions the proportionally egalitarian allocation rule provides core
allocations for Weber and minimax continuous single facility location games
(section 4). In section 2 we introduce the classes of games we deal with and
motivate the interest of our study.

2 Continuous single facility location games

To start with, we describe what is a continuous single facility location prob-
lem. Informally, in such a problem we have a set of n users of a certain facility,
placed in n di¤erent points in the space Rm with mb 1. The problem consists
of finding a location for the facility which minimizes the transportation cost
(which depends on the distances from the users to the facility). Formally, a
continuous single facility location problem is a triplet ðN;F; dÞ where:

. N ¼ fa1; . . . ; ang is a set of n di¤erent points in Rm (with nb 2),. F : Rn ! R is a lower semicontinuous globalizing function satisfying that:
1) F is definite, i.e. FðxÞ ¼ 0 if and only if x ¼ 0; 2) F is monotone, i.e.
FðxÞaFðyÞ whenever xa y, and. d : Rm � Rm ! R is a measure of distance, satisfying that, for every r; s A
Rm, dðr; sÞ ¼ f ðkr	 skÞ, where f is a lower semicontinuous, non decreasing
and non negative map from R to R with f ð0Þ ¼ 0, and k k is a norm on Rm.

Solving the continuous single facility location problem ðN;F; dÞ for SHN

means to find an x A Rm minimizing Fðd SðxÞÞ, where d SðxÞ is the vector in
Rn whose i-th component is equal to dðx; aiÞ if ai A S, and equal to zero other-
wise. We denote LðSÞ ¼ minx ARm Fðd SðxÞÞ. It is worth noting that this prob-
lem always has a solution for every SHN (see, for instance, Plastria (1995)).

This is the classical version of the continuous single facility location prob-
lem. Here we consider a natural variant of this problem in which the users
in N are interested not only in finding an optimal location of the facility, but
also in sharing the corresponding total costs. By total costs we mean the sum
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of the variable costs (depending on the users and on the location of the facil-
ity; they are mostly transportation costs), plus the fixed costs (independent of
the number of users and of the location of the facility; they are mostly installa-
tion costs). Formally, a continuous single facility location situation is a 4-tuple
ðN;F; d;KÞ where ðN;F; dÞ is a continuous single facility location problem
and K A R, Kb 0, is the fixed installation cost of the facility. Note that we can
associate with ðN;F; d;KÞ a cost TU-game ðN; cÞ whose characteristic func-
tion c is defined, for every SHN ¼ fa1; . . . ; ang, by:

cðSÞ ¼ K þ LðSÞ if S0q

0 if S ¼ q.

�

Every cost TU-game defined in this way is what we call a continuous single
facility location game. From now on, for simplicity, we will write location
problems, situations or games instead of continuous single facility location
problems, situations or games. We denote by LðNÞ the class of location games
with set of players N (note that we identify the players with their location in
the space). As usual, we will also identify the game ðN; cÞ with its characteristic
function c.

In a location situation, the goal of the users is to find a location for the
facility which minimizes the total cost, and to allocate the corresponding mini-
mal total cost. Before going on, let us give a couple of examples of location
situations.

Example 2.1. Suppose that the councils of n nearby towns (town i located at
point ai A R2), make an agreement to build an airport jointly. The building cost
of the airport is, approximately, K euros. The agreement includes the compro-
mise to invest in each town a number of euros equal to A times its squared dis-
tance to the airport (A being a positive real number) in order to create good
roads and railway infrastructure communicating the towns and the airport. The
councils want to find an optimal location for the airport (minimizing the total
costs) and to share the corresponding total costs. Notice that this is a location
situation ðN;F; d;KÞ with Fðd SðxÞÞ ¼ A

P
ai AS

kx	 aik2
2 for all x A R2, and

all SHN. Observe that FðxÞ ¼ A
Pn

i¼1 xi, for all x A Rn, f ðyÞ ¼ y2, for all
y A R, and d ¼ k k2 is the Euclidean norm. (Here we take k k2 , but other norms
might be more natural in other circumstances.)

Example 2.2. Suppose that the councils of n nearby towns (town i located at
point ai A R2), make an agreement to create a local TV. This has a fixed cost of
K euros (building the main o‰ce and studios) and a variable cost. The variable
cost (the cost of the station itself ) has been estimated to be A times the squared
radius of coverage of the TV station (the radius of coverage of a station is the
maximum distance to the location of the station from which the TV signal can be
properly received; A is a positive real number). The councils want to find an op-
timal location for the TV station (such that all towns receive the TV signal prop-
erly and at a minimum cost) and to share the corresponding total costs. Notice

that this is a location situation ðN;F; d;KÞ with Fðd SðxÞÞ ¼ Amaxai ASkx	 aik
2
2

for all x A R2, and all SHN. Observe that FðxÞ ¼ Aðmaxfx1; . . . ; xngÞ, for all
x A Rn, f ðyÞ ¼ y2, for all y A R, and d ¼ k k2 is the Euclidean norm. (Again,
we take k k2, but other norms might be more natural in other circumstances.)
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An interesting problem which arises now is to study under what conditions
there exists a stable allocation of the minimal total costs in a location situation,
i.e., under what conditions the core of the corresponding location game is non
empty (see section 3 for a formal definition of core). Note that this is an im-
portant problem, because users do not only want to find an optimal location
for the facility, but also to allocate the total costs. If there is not a stable alloca-
tion, probably these users will not be able to reach an agreement and will not
build the facility together.

The study of the core of a location game is the main topic of this paper. In
the next section we give su‰cient conditions in order that the core of a loca-
tion game is non empty. In section 4 we treat two specially relevant classes of
location games and give conditions for the proportionally egalitarian alloca-
tion rule (which is commonly used in practice) providing core allocations. It
is important to stress that we are looking for conditions that can be checked
in a reasonably easy way. Take into account that, in location games, even the
computation of the characteristic function can be a di‰cult task. Hence, we are
interested both in finding good theoretical results, and also in producing con-
ditions which are reasonably easy to use in order to predict whether a given
location situation is stable.

To conclude this section we study some preliminary properties of location
games.

Proposition 2.1. Take c A LðNÞ the location game corresponding to ðN;F;
d;KÞ. Then c is monotonic (i.e., cðSÞa cðTÞ for all S;THN with SHT).

Proof. Let SHT be two coalitions. By definition d Si ðxÞa dTi ðxÞ for all i and
x. Then, since F is monotone, Fðd SðxÞÞaFðd TðxÞÞ. Hence, the result fol-
lows. r

Proposition 2.2. Take c A LðNÞ the location game corresponding to ðN;F;
d;KÞ. If LðNÞaK then c is subadditive (i.e., cðSWTÞÞa cðSÞ þ cðTÞ for all
S;THN with SXT ¼ q).

Proof. Let S;T be two coalitions. Then, by the monotonicity of L (see the
proof of Proposition 2.1) and the properties of F,

LðSWTÞ 	 ðLðSÞ þ LðTÞÞaLðSWTÞaLðNÞ:

Now, since LðNÞaK , then LðSWTÞaK þ LðSÞ þ LðTÞ and

cðSWTÞ ¼ K þ LðSWTÞaK þ LðSÞ þ K þ LðTÞ ¼ cðSÞ þ cðTÞ: r

Note that in the result above we proved that, if LðNÞaK , then cðSWTÞa
cðSÞ þ cðTÞ for any pair of coalitions S and T disjoint or not, which is some-
thing stronger than the subadditivity of c. One can wonder if a weaker con-
dition can guarantee the subadditivity. In general, this is not true: take, for
instance, any two-person location game.

The next example shows a subadditive location game with an empty core.
It motivates the next sections of this paper where we search for su‰cient con-
ditions for the non emptiness of the core of a location game.
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Example 2.3. Let N ¼ fa1; a2; a3g be the set of players, located on the vertices
of an equilateral triangle of side l. Consider that the globalizing function is the
sum and d is the Euclidean distance to the power of b (bb 2). Then

Fðd SðxÞÞ ¼
X
ai AS

kx	 aikb2

for every SHN and every x A Rm. It is easy to check that the location game
associated with ðN;F; d;KÞ is given by:

cða1Þ ¼ cða2Þ ¼ cða3Þ ¼ K ;

cða1a2Þ ¼ cða1a3Þ ¼ cða2a3Þ ¼ K þ 2ðl=2Þb;

cða1a2a3Þ ¼ K þ 3

� ffiffiffi
3

p

3
l

�b
:

After some algebra, it can be checked that this game is subadditive if and only if

Kb ðl b=
ffiffiffi
3

p b	2Þ 	 ðl b=2b	1Þ. However, taking for instance K ¼ ðl b=
ffiffiffi
3

p b	2Þ	
ðl b=2b	1Þ, it can be seen that the resulting location game has an empty core.
Namely, since all its players are symmetric, a necessary and su‰cient condition
for the non emptiness of its core is that the egalitarian allocation ðcðNÞ=3;
cðNÞ=3; cðNÞ=3Þ belongs to it. After some algebra it can be checked that this is
not the case when b > 2.

3 The core

We devote this section to present a su‰cient condition for the non emptiness
of the core of a location game. Remember that the core of a cost game ðN; cÞ
is given by

coreðcÞ ¼ x A Rn

�Xn
i¼1

xi ¼ cðNÞ; cðSÞb
X
i AS

xi ESHN

( )
:

First, we prove a technical result concerning the sum of the balancing co-
e‰cients of a balanced family of coalitions. Recall that a collection of coali-
tions BH 2N is balanced if and only if there exists a set of positive real co-
e‰cients fgS=S A Bg (balancing coe‰cients) satisfying that

P
S:ai AS

gS ¼ 1 for
every ai A N. The set of balancing coe‰cients associated with a balanced col-
lection needs not to be unique. However, every minimal balanced collection of
coalitions (in the sense that it does not properly contain another balanced col-
lection) has a unique set of balancing coe‰cients (see Owen (1995)). It is a well-
known result that a cost game ðN; cÞ has a non empty core if and only if it, for
every minimal balanced collection B with balancing coe‰cients fgS=S A Bg, it
holds that

P
S AB gScðSÞb cðNÞ (again, see Owen (1995)).

Note that the only balanced collection with balancing coe‰cients summing
up to one is B¼ fNg. Indeed, for every balanced collection B and every ai A N,P

S:ai AS
gS ¼ 1; if, in addition,

P
S AB gS ¼ 1 then, for every S A B and every
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ai A N, ai A S. Therefore S ¼ N, for all S A B, and thus B ¼ fNg. We say that
B ¼ fNg is the trivial collection. Our next result establishes bounds on the sum
of the balancing coe‰cients for any non trivial balanced collection.

Lemma 3.1. LetB be a non trivial balanced collection with balancing coe‰cients
fgS=S A Bg. Then,

n

n	 1
a

X
S AB

gS a n:

Proof. Let us consider the following linear programming problem (1):

min
X

S A 2NnfNg
gS

s:t::
X

fS A 2NnfNg:ai ASg
gS ¼ 1 Eai A N

gS b 0 ES A 2NnfNg: ð1Þ

A solution to this problem is a set of balancing coe‰cients of a non trivial
balancing collection with a minimal sum (B ¼ fS A 2N=gS > 0g). Let us de-
note the coalition Nnfajg ¼ fa1; a2; : : ; aj	1; ajþ1; . . . ; ang by 	j. Consider the
basis B of Problem (1) of the columns which correspond to g	1; g	2; . . . ; g	n.
In this problem the matrix of B, its inverse B	1 and the transformed right-
hand side B	1b are:

B ¼

2
66664

0 1 . . . 1

1 0 . . . 1

..

. ..
. . .

. ..
.

1 1 . . . 0

3
77775;

B	1 ¼ 1

n	 1

	ðn	 2Þ 1 . . . 1

1 	ðn	 2Þ . . . 1

..

. ..
. . .

. ..
.

1 1 . . . 	ðn	 2Þ

2
66664

3
77775;

and B	1b ¼ 1

n	 1
; . . . ;

1

n	 1

� �t
. The reduced costs for any coalition S with

1a ka n	 1 players are:

cBB
	1aS 	 cS ¼ k

n	 1
	 1 < 0 i¤ k < n	 1;

cBB
	1aS 	 cS ¼ n	 1

n	 1
	 1 ¼ 0 i¤ k ¼ n	 1:
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Then B is a basis associated with an optimal solution of Problem (1), which
proves the lower bound. The proof for the upper bound is straightforward and
it follows taking the collection whose elements are all the sets of size one with
coe‰cients equal to 1. r

Using the lemma above, we prove now the main result in this section.

Theorem 3.1. Let ðN;F; d;KÞ be a location situation and let ðN; cÞ be its cor-
responding location game. Denote l2 ¼ minSHN:jSj¼2 LðSÞ.

a) Suppose that 2a na 2 þ l2

K
. If Kðn	 1ÞbLðNÞ, then c has a non empty

core.
b) Suppose that 2 þ l2

K
< n. If Kb ðn	 1ÞLðNÞ 	 nl2, then c has a non empty

core.

Proof. In a location game we have for any balanced collection B with bal-
ancing coe‰cients fgS=S A Bg:

X
S AB

gScðSÞ ¼ K
� X
S AB

gS

�
þ

X
S AB

gSLðSÞ:

Taking into account the monotonicity of L and the fact that LðSÞ ¼ 0 for
any coalition S of size one, we have that

X
S AB

gScðSÞ ¼ K
�X
S AB

gS

�
þ

X
S AB:jSjb2

gSLðSÞ

bK
� X
S AB

gS

�
þ

X
S AB:jSjb2

gSl2:

For every minimal balanced collection B denote

mðBÞ ¼ K
�X
S AB

gS

�
þ l2

X
S AB:jSjb2

gS

(note that, if B is minimal, the balancing coe‰cients are uniquely determined).
Then, a su‰cient condition for the non emptiness of the core is that

min
fB:B non trivial and minimal balancedg

mðBÞb cðNÞ: ð2Þ

Suppose that this minimum is achieved in B̂B. If faig B B̂B for every ai A N,

then B̂B ¼ f	i=ai A Ng (see Lemma 3.1) and mðB̂BÞ ¼ ðK þ l2Þ
n

n	 1
. If B̂B ¼

ffaig=ai A Ng, then mðB̂BÞ ¼ Kn. In any other case B̂B can only be a family
ffaig;Nnaig (for an ai A A) and, then, mðB̂BÞ ¼ 2K þ l2.

Now, sincemðB̂BÞ ¼ min ðK þ l2Þ
n

n	 1
;Kn; 2K þ l2

� �
, then it can be easily

checked that
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mðB̂BÞ ¼
Kn if 2a na 2 þ l2

K

ðK þ l2Þ
n

n	 1
if 2 þ l2

K
< n:

8>>><
>>>:

This together with (2) completes the proof. r

The following examples show that the bounds in the theorem are tight, in
the sense that they cannot be improved for all n. In particular, these examples
show that they are achieved for n ¼ 2 and n ¼ 3.

Example 3.1. Let N ¼ fa1; a2g be the set of players, located on the extremes of
a segment of length 2. Consider that the globalizing function is the sum and that
d is the squared Euclidean distance. It is easy to check that the location game
ðN; cÞ associated with ðN;F; d;KÞ is given by: cða1Þ ¼ cða2Þ ¼ K, cða1a2Þ ¼
K þ 2. Clearly, this game has a non empty core if and only if Kb 2. Note that,
in this case, we are under condition a) and Kðn	 1ÞbLðNÞ is equivalent to
Kb 2, so the bound is tight for this game.

Example 3.2. Take the location situation and the location game of Example 2.3
with b ¼ 2. Thus, N ¼ fa1; a2; a3g and the characteristic function of the game
is:

cða1Þ ¼ cða2Þ ¼ cða3Þ ¼ K

cða1a2Þ ¼ cða2a3Þ ¼ cða1a3Þ ¼ K þ l 2

2

cða1a2a3Þ ¼ K þ l2:

Since players are symmetric in c, coreðcÞ0q if and only if the egalitarian

allocation
cðNÞ

3
;
cðNÞ

3
;
cðNÞ

3

� �
belongs to coreðcÞ. It is easy to check that this

allocation belongs to the core if and only if Kb
l 2

2
. Note that, in this case, if

K >
l2

2
we are under condition b); if Ka

l2

2
we are under condition a). In both

cases, the bound given by the theorem is Kb
l2

2
. So, again, the bound is tight

in this example.

We have given a su‰cient condition for the non emptiness of the core of
any location game. This condition is a good one because: a) it cannot be im-
proved in general, and b) it can be checked in a reasonably easy way (you only
have to compute l2 and LðNÞ). Another su‰cient condition for the non emp-
tiness of the core which is even simpler is given below.

Proposition 3.1. Let ðN;F; d;KÞ be a location situation and let ðN; cÞ be its
corresponding location game. If Kb ðn	 1ÞLðNÞ, then c has a non empty core.
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Proof. Let us check that the egalitarian allocation
K þLðNÞ

n
; . . . ;

K þLðNÞ
n

� �
belongs to coreðcÞ. Namely, for every SHN with jSja n	 1,

jSjK þ LðNÞ
n

a ðn	 1ÞK þ LðNÞ
n

aKa cðSÞ: r

Note that, although the condition in Proposition 3.1 is simpler than the
condition in Theorem 3.1, it is also weaker. Only in case l2 is very small (i.e.,
in case there are two users located in two points very close), the condition in
Theorem 3.1 tends to be the same as that of Proposition 3.1. But, in such a
case, perhaps it would be more convenient to consider these two close players
as only one player.

4 Two special classes of location games

In this section we deal with two classes of location games corresponding to two
important classes of location problems: Weber location problems and mini-
max location problems. In both classes d is the squared Euclidean distance. In
the Weber location problem the globalizing function is the sum, whereas in the
minimax location problem the globalizing function is the maximum. Hence,
the corresponding location games are given by

cW ðSÞ ¼ min
x ARm

X
a AS

kx	 ak2
2 þ K ð3Þ

cMðSÞ ¼ min
x ARm

max
a AS

kx	 ak2
2 þ K ð4Þ

for all non empty SHN (being ðN;F; d;KÞ a Weber and a minimax location
situation, respectively). Note that Example 2.1 and Example 2.2 in section 2
are a Weber location situation and a minimax location situation, respectively.

These two classes of location problems are well-known (see Love et al
(1988)) and have been extensively studied in the literature of location theory.
It is straightforward to derive that the optimal solution of Problem (3) is:

x�ðSÞ ¼ 1

jSj
X
a AS

a:

On the other hand, the optimal solutions of problem (4) can be easily ob-
tained in OðnlognÞ time (see Megiddo (1983) or Megiddo and Zemel (1986)).

In this section we deal with the location games arising from Weber and
minimax location situations. Obviously, all the results of the previous section
still apply for these games. However, now we go further and, instead of won-
dering when their cores are non empty, we study under which conditions a very
natural solution concept (the proportionally egalitarian solution) provides core
allocations for Weber or minimax location games.

In many practical situations, when several users decide to build a facility
together, they agree to use some sort of proportionally egalitarian solution for
allocating the costs. For Weber location situations a proportionally egalitarian
rule consists of the following: a) the facility will be built in the location x�ðNÞ
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which minimizes the total cost, b) the fixed costs K are proportionally divided
among the users, according to a vector of positive real proportionality coe‰-
cients ða1; . . . ; anÞ, and c) each user pays the transportation costs he produces
(provided that the facility will be located in x�ðNÞ).

This means that, if ðN; cW Þ is the Weber location game associated with the
Weber location situation ðN;F; d;KÞ, according to this rule (that we denote by
E ), user i must pay

EiðcW Þ ¼ Ki þ kx�ðNÞ 	 aik2
2 ;

where Ki ¼ K
ai

a
, and a ¼

Pn
i¼1 ai. For a better understanding of item b), let

us say that, in many cases, the proportionality vector will be ð1=n; . . . ; 1=nÞ, but
sometimes another vector will be more appropriate. For instance, in Example
2.1, the towns can use their number of inhabitants as proportionality coe‰-
cients.

Now we give a necessary and su‰cient condition in order that this propor-
tional egalitarian solution provides core allocations.

Theorem 4.1. Let ðN; cW Þ be a Weber location game corresponding to the Weber
location situation ðN;F; d;KÞ. Then EðcW Þ belongs to coreðcW Þ if and only if

jSj kx�ðSÞ 	 x�ðNÞk2
2 a

X
ai BS

Ki ð5Þ

for any coalition SHN.

Proof. EðcW Þ belongs to coreðcÞ if and only if, for all SHN,X
ai AS

Ki þ
X
ai AS

kx�ðNÞ 	 aik2
2 aK þ

X
ai AS

kx�ðSÞ 	 aik2
2

or, equivalently,X
ai AS

kx�ðNÞ 	 aik2
2 	

X
ai AS

kx�ðSÞ 	 aik2
2 a

X
ai BS

Ki:

But X
ai AS

ðkx�ðNÞ 	 aik2
2 	 kx�ðSÞ 	 aik2

2Þ

¼
X
ai AS

½kx�ðNÞk2
2 	 kx�ðSÞk2

2 	 2hx�ðNÞ 	 x�ðSÞ; aii�

¼ jSj kx�ðNÞk2
2 	 kx�ðSÞk2

2 	 2
X
ai AS

x�ðNÞ 	 x�ðSÞ; aijSj

� �" #

¼ jSj½kx�ðNÞk2
2 þ kx�ðSÞk2

2 	 2hx�ðNÞ; x�ðSÞi�:

Hence, the result follows. r

382 J. Puerto et al.



Condition (5) can be interpreted in the following way. The left hand side of
the inequality can be roughly seen as the extra transportation cost that users in
S will have to hold if the grand coalition N forms. The right hand side is the
part of K supported by the players in NnS. Hence, EðcW Þ belongs to coreðcW Þ
if and only if the extra transportation cost that every coalition must support is
smaller than or equal to the fixed cost that it saves. It is worth noting that con-
dition (5) is fulfilled, for every Weber location problem and every proportion-
ality vector a, if K is large enough.

An easier condition which does not depend on the set of coalitions S is
derived in our next result. Set rN ¼ maxa ANkx�ðNÞ 	 ak2

2 .

Corollary 4.1. EðcW Þ A coreðcÞ if

ðn	 1ÞrN a min
ai AN

Ki:

Proof. Note first that rN b kx�ðNÞ 	 x�ðSÞk2
2 for any coalition SHN. Then,

under the hypothesis of the corollary, rN a
minai AN Ki
ðn	 1Þ a

P
ai BS

Ki

n	 1
a

P
ai BS

Ki

jSj
for any coalition SHN, S0N. Thus, jSj kx�ðNÞ 	 x�ðSÞk2

2 a
P
ai BS

Ki, and

we obtain from (5) that xP A coreðcÞ (note that (5) is obviously true for
S ¼ N). r

Let us consider now the class of minimax location games in Rm. To start
with note that, in this class,

l2 ¼ min
a;b AN;a0b

ka	 bk2
2

4
:

Hence, l2 can be computed in a reasonably easy way and the conditions in
Theorem 3.1 can be easily checked.

Now denote lk ¼ minSHN:jSj¼k LðSÞ, for k A f2; . . . ; ng. In location theory,
it is a well-known feature that, for every SHN with jSjbmþ 1, LðSÞ is equal
to LðSÞ for an SHS with jSj ¼ mþ 1 (because, in a minimax location prob-
lem with set of points S, the solution is the center of the smallest sphere con-
taining S, and this sphere is fully determined by at most mþ 1 points in S, only
three points for a circle in R2, see Elzinga and Hearn (1972)). Hence, since L is
monotone, lk ¼ lmþ1 for all kbmþ 1.

Next we provide a su‰cient and easy to check condition in order that the
proportionally egalitarian solution belongs to the core in a minimax location
game. First we say what we mean by proportionally egalitarian solution in this
context. As in Weber location games, assume that there is a vector of positive
real proportionality coe‰cients ða1; . . . ; anÞ. Assume, without loss of general-
ity, that a1aa2a � � �a an. Denote a¼

P
ai AN

ai. Note that, in minimax loca-
tion games, a particular user does not produce transportation costs once the
location of the facility is decided, in the sense that the transportation costs
would be the same even if he leaves the game. (Think of Example 2.2: once the
location and the radius of coverage of the station have been decided, a partic-
ular user does not produce transportation costs. This is not the case in a Weber
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location game, as the one in Example 2.1). Hence, the right way of defining
here the proportionally egalitarian solution E is the following. If ðN; cMÞ is the
minimax location game associated with the minimax location situation ðN;F;
d;KÞ, then EiðcMÞ ¼ ðK þ LðNÞÞai=a, for all ai A N. The next theorem states
a su‰cient condition for E providing core allocations.

Theorem 4.2. Let ðN; cMÞ be the minimax location game corresponding to the
minimax location situation ðN;F; d;KÞ. Then, EðcMÞ belongs to coreðcMÞ if

LðNÞ
Pn

j¼n	kþ1 aj

a
	 rðkÞaK

�
1 	

Pn
j¼n	kþ1 aj

a

�
ð6Þ

for every k A f1; . . . ; ng, where rð1Þ ¼ 0, rðkÞ ¼ lk for any 2a kamþ 1 and
rðkÞ ¼ lmþ1 for all kbmþ 1.

Proof. EðcMÞ A coreðcMÞ if and only if, for all SHN,

X
ai AS

ðK þ LðNÞÞ ai
a
aK þ LðSÞ: ð7Þ

Taking into account that a1 a a2 a � � � a an and that lk ¼ lmþ1 for all kb
mþ 1, it is clear that, for every k A f1; . . . ; ng, (6) implies (7) for every SHN
with jSj ¼ k. r

Condition (6) can be interpreted in the following way. The left hand side of
the inequality is the part of the coverage cost that the players in fa1; . . . ; akg
save, minus the smallest coverage cost which should be paid by a coalition of
k players if only they cooperate. The right hand side is the part of the fixed
cost payed by players in fa1; . . . ; akg. Hence, EðcMÞ belongs to coreðcMÞ if
and only if the players with a small proportionality coe‰cient do pay a large
enough part of the coverage cost. Again, it is worth noting that condition (6) is
fulfilled, for every minimax location problem and every proportionality vector
a, if K is large enough.

Note that a weaker su‰cient condition could be easily found. However,
that of Theorem 4.2 above is specially easy to check. You have only to consider
n inequalities, and to compute l2; . . . lmþ1 which in the case of the plane (R2)
reduces to l2 and l3.
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